Problem 1. (20 PTS). A 10 x 10 x 10-in. block of steel (E=30,000 ksi and $\nu=0.30$) is loaded with a uniformly distributed pressure of 30,000 psi on the four faces having outward normals in the x- and y- directions. Rigid frictionless constraints limit the deformation of the block in the z-direction to +0.002 in. Determine the normal stress σ_z that develops as the pressure is applied.

Formula(s):
$$\epsilon_z = \frac{1}{E} [\sigma_{Z-} v (\sigma_x + \sigma_y)]$$

Problem 2. (40 PTS) A tie rod and a pipe strut are used to support a 50-kN load, as shown in the figure below. The cross sectional areas are 650mm² for tie rod AB and 925 mm² for pipe strut BC. Both members are made of structural steel that has a modulus of elasticity of 200 GPa. Determine:

- a) The normal stresses in tie rod AB and pipe strut BC.
- b) The lengthening or shortening of tie rod AB and pipe strut BC.
- c) The horizontal and vertical components of the displacement point B.
- d) The angles through which angles AB and BC rotates. Formula(s):

$$\delta = \frac{\sigma L}{E} = \frac{PL}{AE}$$

Problem 3. (40 PTS). The Assembly shown in the figure below consists of a steel rod A (E_A =30,000 ksi, A_A =2.50 in² and α_A =6.6 x 10⁻⁶/°F), a rigid bearing plate C that is securely fastened to bar A, and a bronze bar (E_B =15,000 ksi, A_B =3.75 in² and α_B =9.4 x 10⁻⁶/°F). A clearance of 0.015 in. exists between the bearing plate C and bar B before the assembly is loaded. If a load P=5 kip is applied to the bearing plate and the temperature of the assembly is

slowly raised, calculate and plot the stresses σ_A in the steel rod and σ_B in the bar bronze as a function of the temperature increase ΔT for $0^{\circ}F < \Delta T < 50^{\circ}F$.

Formulas:

$$\delta = \frac{\sigma L}{E} = \frac{PL}{AE}$$

$$\delta = \alpha \Delta T L$$

Units: 1 kip = 1000 lbf, 1 = 12 in

Marie Commence of the		
Quantity	U.S. Customary Units	MKS Unit Equivalent
Force	1 lbf	4.448 N
	0.2248 <i>lbf</i>	1 N
Stress or Pressure	$1 \ lb/in^2 = 1 \ psi$	$6895. N/m^2 = 6895.$
	0.0001450 <i>psi</i>	Pa
	$1000 \ lb/in^2 = 1 \ ksi$	>1 <i>Pa</i>
	0.1450 <i>ksi</i>	6 895 000 <i>Pa</i> = 6.895 <i>MPa</i>
	>>	1 MPa